
escript(1) User Commands escript(1)

NAME
escript − Erlang scripting support

DESCRIPTION
escript provides support for running short Erlang programs without having to compile them first and an
easy way to retrieve the command line arguments.

EXPORTS
script-name script-arg1 script-arg2...
escript escript-flags script-name script-arg1 script-arg2...

escriptruns a script written in Erlang.

Here follows an example.

$ cat factorial
#!/usr/bin/env escript
%% -*- erlang -*-
%%! -smp enable -sname factorial -mnesia debug verbose
main([String]) ->

try
N = list_to_integer(String),
F = fac(N),
io:format("factorial ˜w = ˜w\n", [N,F])

catch
: ->

usage()
end;

main(_) ->
usage().

usage() ->
io:format("usage: factorial integer\n"),
halt(1).

fac(0) -> 1;
fac(N) -> N * fac(N-1).
$ factorial 5
factorial 5 = 120
$ factorial
usage: factorial integer
$ factorial five
usage: factorial integer

The header of the Erlang script in the example differs from a normal Erlang module. The first line
is intended to be the interpreter line, which invokes escript. Howev er if you invoke theescriptlike
this

$ escript factorial 5

the contents of the first line does not matter, but it cannot contain Erlang code as it will be ignored.

The second line in the example, contains an optional directive to theEmacseditor which causes it
to enter the major mode for editing Erlang source files. If the directive is present it must be located
on the second line.

On the third line (or second line depending on the presence of the Emacs directive), it is possible
to give arguments to the emulator, such as

%%! -smp enable -sname factorial -mnesia debug verbose

Such an argument line must start with%%! and the rest of the line will interpreted as arguments to

Ericsson AB erts 5.8.5 1

escript(1) User Commands escript(1)

the emulator.

If you know the location of theescript executable, the first line can directly give the path to
escript. For instance:

#!/usr/local/bin/escript

As any other kind of scripts, Erlang scripts will not work on Unix platforms if the execution bit for
the script file is not set. (Usechmod +x script-nameto turn on the execution bit.)

The rest of the Erlang script file may either contain Erlangsource code, an inlined beam fileor an
inlined archive file.

An Erlang script file must always contain the functionmain/1. When the script is run, themain/1
function will be called with a list of strings representing the arguments given to the script (not
changed or interpreted in any way).

If the main/1function in the script returns successfully, the exit status for the script will be 0. If an
exception is generated during execution, a short message will be printed and the script terminated
with exit status 127.

To return your own non-zero exit code, callhalt(ExitCode); for instance:

halt(1).

Call escript:script_name() from your to script to retrieve the pathname of the script (the path-
name is usually, but not always, absolute).

If the file contains source code (as in the example above), it will be processed by the preprocessor
epp. This means that you for example may use pre-defined macros (such as?MODULE) as well as
include directives like the-include_libdirective. For instance, use

-include_lib("kernel/include/file.hrl").

to include the record definitions for the records used by thefile:read_link_info/1function.

The script will be checked for syntactic and semantic correctness before being run. If there are
warnings (such as unused variables), they will be printed and the script will still be run. If there are
errors, they will be printed and the script will not be run and its exit status will be 127.

Both the module declaration and the export declaration of themain/1function are optional.

By default, the script will be interpreted. You can force it to be compiled by including the follow-
ing line somewhere in the script file:

-mode(compile).

Execution of interpreted code is slower than compiled code. If much of the execution takes place
in interpreted code it may be worthwhile to compile it, even though the compilation itself will take
a little while. It is also possible to supplynative instead of compile, this will compile the script
using the native flag, again depending on the characteristics of the escript this could or could not
be worth while.

As mentioned earlier, it is possible to have a script which contains precompiledbeamcode. In a
precompiled script, the interpretation of the script header is exactly the same as in a script contain-
ing source code. That means that you can make abeamfile executable by prepending the file with
the lines starting with#! and%%! mentioned above. In a precompiled script, the functionmain/1
must be exported.

As yet another option it is possible to have an entire Erlang archive in the script. In a archive
script, the interpretation of the script header is exactly the same as in a script containing source
code. That means that you can make an archive file executable by prepending the file with the lines
starting with#! and %%! mentioned above. In an archive script, the functionmain/1 must be
exported. By default themain/1function in the module with the same name as the basename of the
escriptfile will be invoked. This behavior can be overridden by setting the flag-escript main Mod-
ule as one of the emulator flags. TheModulemust be the name of a module which has an exported

Ericsson AB erts 5.8.5 2

escript(1) User Commands escript(1)

main/1function. Seecode(3erl)for more information about archives and code loading.

In many cases it is very convenient to have a header in the escript, especially on Unix platforms.
But the header is in fact optional. This means that you directly can "execute" an Erlang module,
beam file or archive file without adding any header to them. But then you have to inv oke the script
like this:

$ escript factorial.erl 5
factorial 5 = 120
$ escript factorial.beam 5
factorial 5 = 120
$ escript factorial.zip 5
factorial 5 = 120

escript:create(FileOrBin, Sections) -> ok | {ok, binary()} | {error, term()}

Types:

FileOrBin = filename() | ’binary’
Sections = [Header] Body | Body
Header = shebang | {shebang, Shebang} | comment | {comment, Comment} | {emu_args,
EmuArgs}
Shebang = string() | ’default’ | ’undefined’
Comment = string() | ’default’ | ’undefined’
EmuArgs = string() | ’undefined’
Body = {source, SourceCode} | {beam, BeamCode} | {archive, ZipArchive}
SourceCode = BeamCode = ZipArchive = binary()

The create/2function creates an escript from a list of sections. The sections can be given in any
order. An escript begins with an optionalHeaderfollowed by a mandatoryBody. If the header is
present, it does always begin with ashebang, possibly followed by acommentandemu_args. The
shebangdefaults to"/usr/bin/env escript". The comment defaults to"This is an -*- erlang -*- file".
The created escript can either be returned as a binary or written to file.

As an example of how the function can be used, we create an interpreted escript which uses
emu_args to set some emulator flag. In this case it happens to disable the smp_support. We do also
extract the different sections from the newly created script:

> Source = "%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(smp_support)).\n".
"%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(smp_support)).\n"
> io:format("˜s\n", [Source]).
%% Demo
main(_Args) ->

io:format(erlang:system_info(smp_support)).

ok
> {ok, Bin} = escript:create(binary, [shebang, comment, {emu_args, "-smp disable"}, {source, list_to_binary(Source)}]).
{ok,<<"#!/usr/bin/env escript\n%% This is an -*- erlang -*- file\n%%!-smp disabl"...>>}
> file:write_file("demo.escript", Bin).
ok
> os:cmd("escript demo.escript").
"false"
> escript:extract("demo.escript", []).
{ok,[{shebang,default}, {comment,default}, {emu_args,"-smp disable"},

{source,<<"%% Demo\nmain(_Args) ->\n io:format(erlang:system_info(smp_su"...>>}]}

Ericsson AB erts 5.8.5 3

escript(1) User Commands escript(1)

An escript without header can be created like this:

> file:write_file("demo.erl", ["%% demo.erl\n-module(demo).\n-export([main/1]).\n\n", Source]).
ok
> {ok, _, BeamCode} = compile:file("demo.erl", [binary, debug_info]).
{ok,demo,

<<70,79,82,49,0,0,2,208,66,69,65,77,65,116,111,109,0,0,0,
79,0,0,0,9,4,100,...>>}

> escript:create("demo.beam", [{beam, BeamCode}]).
ok
> escript:extract("demo.beam", []).
{ok,[{shebang,undefined}, {comment,undefined}, {emu_args,undefined},

{beam,<<70,79,82,49,0,0,3,68,66,69,65,77,65,116,
111,109,0,0,0,83,0,0,0,9,...>>}]}

> os:cmd("escript demo.beam").
"true"

Here we create an archive script containing both Erlang code as well as beam code. Then we iter-
ate over all files in the archive and collect their contents and some info about them.

> {ok, SourceCode} = file:read_file("demo.erl").
{ok,<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(_Arg"...>>}
> escript:create("demo.escript", [shebang, {archive, [{"demo.erl", SourceCode}, {"demo.beam", BeamCode}], []}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu_args,undefined}, {archive, ArchiveBin}]} = escript:extract("demo.escript", []).
{ok,[{shebang,default}, {comment,undefined}, {emu_args,undefined},

{{archive,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,
152,61,93,107,0,0,0,118,0,...>>}]}

> file:write_file("demo.zip", ArchiveBin).
ok
> zip:foldl(fun(N, I, B, A) -> [{N, I(), B()} | A] end, [], "demo.zip").
{ok,[{"demo.beam",

{file_info,748,regular,read_write,
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
54,1,0,0,0,0,0},

<<70,79,82,49,0,0,2,228,66,69,65,77,65,116,111,109,0,0,0,
83,0,0,...>>},

{"demo.erl",
{file_info,118,regular,read_write,

{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
{{2010,3,2},{0,59,22}},
54,1,0,0,0,0,0},

<<"%% demo.erl\n-module(demo).\n-export([main/1]).\n\n%% Demo\nmain(_Arg"...>>}]}

escript:extract(File, Options) -> {ok, Sections} | {error, term()}

Types:

File = filename()
Options = [] | [compile_source]
Sections = Headers Body
Headers = {shebang, Shebang} {comment, Comment} {emu_args, EmuArgs}

Ericsson AB erts 5.8.5 4

escript(1) User Commands escript(1)

Shebang = string() | ’default’ | ’undefined’
Comment = string() | ’default’ | ’undefined’
EmuArgs = string() | ’undefined’
Body = {source, SourceCode} | {source, BeamCode} | {beam, BeamCode} | {archive,
ZipArchive}
SourceCode = BeamCode = ZipArchive = binary()

Theextract/2 function parses an escript and extracts its sections. This is the reverse ofcreate/2.

All sections are returned even if they do not exist in the escript. If a particular section happens to
have the same value as the default value, the extracted value is set to the atomdefault. If a section
is missing, the extracted value is set to the atomundefined.

The compile_sourceoption only affects the result if the escript containssourcecode. In that case
the Erlang code is automatically compiled and{source, BeamCode}is returned instead of{source,
SourceCode}.

> escript:create("demo.escript", [shebang, {archive, [{"demo.erl", SourceCode}, {"demo.beam", BeamCode}], []}]).
ok
> {ok, [{shebang,default}, {comment,undefined}, {emu_args,undefined}, {archive, ArchiveBin}]} = escript:extract("demo.escript", []).
{ok,[{{archi ve,<<80,75,3,4,20,0,0,0,8,0,118,7,98,60,105,

152,61,93,107,0,0,0,118,0,...>>}
{emu_args,undefined}]}

escript:script_name() -> File

Types:

File = filename()

The script_name/0function returns the name of the escript being executed. If the function is
invoked outside the context of an escript, the behavior is undefined.

OPTIONS ACCEPTED BY ESCRIPT
-c:

Compile the escript regardless of the value of the mode attribute.

-d:
Debug the escript. Starts the debugger, loads the module containing themain/1 function into the
debugger, sets a breakpoint inmain/1and invokes main/1. If the module is precompiled, it must be
explicitly compiled with thedebug_infooption.

-i:
Interpret the escript regardless of the value of the mode attribute.

-s:
Only perform a syntactic and semantic check of the script file. Warnings and errors (if any) are written
to the standard output, but the script will not be run. The exit status will be 0 if there were no errors,
and 127 otherwise.

-n:
Compile the escript using the +native flag.

Ericsson AB erts 5.8.5 5

erl(1) User Commands erl(1)

NAME
erl − The Erlang Emulator

DESCRIPTION
Theerl program starts an Erlang runtime system. The exact details (for example, whethererl is a script or a
program and which other programs it calls) are system-dependent.

Windows users probably wants to use thewerl program instead, which runs in its own window with scroll-
bars and supports command-line editing. Theerl program on Windows provides no line editing in its shell,
and on Windows 95 there is no way to scroll back to text which has scrolled off the screen. Theerl program
must be used, however, in pipelines or if you want to redirect standard input or output.

Note:
As of ERTS version 5.8 (OTP-R14A) the runtime system will by default bind schedulers to logical proces-
sors using thedefault_bindbind type if the amount of schedulers are at least equal to the amount of logical
processors configured, binding of schedulers is supported, and a CPU topology is available at startup.

If the Erlang runtime system is the only operating system process that binds threads to logical processors,
this improves the performance of the runtime system. However, if other operating system processes (as for
example another Erlang runtime system) also bind threads to logical processors, there might be a perfor-
mance penalty instead. If this is the case you, are are advised to unbind the schedulers using the+sbtu
command line argument, or by invoking erlang:system_flag(scheduler_bind_type, unbound).

EXPORTS
erl <arguments>

Starts an Erlang runtime system.

The arguments can be divided intoemulator flags, flagsandplain arguments:

* Any argument starting with the character+ is interpreted as anemulator flag.

As indicated by the name, emulator flags controls the behavior of the emulator.

* Any argument starting with the character- (hyphen) is interpreted as aflag which should be
passed to the Erlang part of the runtime system, more specifically to theinit system process,
seeinit(3erl) .

The init process itself interprets some of these flags, theinit flags. It also stores any remaining
flags, theuser flags. The latter can be retrieved by calling init:get_argument/1.

It can be noted that there are a small number of "-" flags which now actually are emulator
flags, see the description below.

* Plain arguments are not interpreted in any way. They are also stored by theinit process and
can be retrieved by calling init:get_plain_arguments/0. Plain arguments can occur before the
first flag, or after a-- flag. Additionally, the flag -extra causes everything that follows to
become plain arguments.

Example:

% erl +W w -sname arnie +R 9 -s my_init -extra +bertie
(arnie@host)1> init:get_argument(sname).
{ok,[["arnie"]]}
(arnie@host)2> init:get_plain_arguments().
["+bertie"]

Here+W w and+R 9 are emulator flags.-s my_initis an init flag, interpreted byinit. -sname arnie
is a user flag, stored byinit. It is read by Kernel and will cause the Erlang runtime system to
become distributed. Finally, everything after -extra (that is, +bertie) is considered as plain

Ericsson AB erts 5.8.5 1

erl(1) User Commands erl(1)

arguments.

% erl -myflag 1
1> init:get_argument(myflag).
{ok,[["1"]]}
2> init:get_plain_arguments().
[]

Here the user flag-myflag 1 is passed to and stored by theinit process. It is a user defined flag, pre-
sumably used by some user defined application.

FLAGS
In the following list, init flags are marked (init flag). Unless otherwise specified, all other flags are user
flags, for which the values can be retrieved by calling init:get_argument/1. Note that the list of user flags is
not exhaustive, there may be additional, application specific flags which instead are documented in the cor-
responding application documentation.

--(init flag):
Everything following -- up to the next flag (-flag or +flag) is considered plain arguments and can be
retrieved using init:get_plain_arguments/0.

-Application Par Val:
Sets the application configuration parameterPar to the valueVal for the applicationApplication, see
app(5)andapplication(3erl).

-args_file FileName:
Command line arguments are read from the fileFileName. The arguments read from the file replace
the ’-args_file FileName’ fl ag on the resulting command line.

The fileFileNameshould be a plain text file and may contain comments and command line arguments.
A comment begins with a # character and continues until next end of line character. Backslash (\\) is
used as quoting character. All command line arguments accepted byerl are allowed, also the-args_file
FileNameflag. Be careful not to cause circular dependencies between files containing the-args_file
flag, though.

The -extraflag is treated specially. Its scope ends at the end of the file. Arguments following an-extra
flag are moved on the command line into the-extrasection, i.e. the end of the command line following
after an-extraflag.

-async_shell_start:
The initial Erlang shell does not read user input until the system boot procedure has been completed
(Erlang 5.4 and later). This flag disables the start synchronization feature and lets the shell start in par-
allel with the rest of the system.

-boot File:
Specifies the name of the boot file,File.boot, which is used to start the system. Seeinit(3erl) . Unless
File contains an absolute path, the system searches forFile.bootin the current and$ROOT/bindirecto-
ries.

Defaults to$ROOT/bin/start.boot.

-boot_var Var Dir:
If the boot script contains a path variableVar other than$ROOT, this variable is expanded toDir . Used
when applications are installed in another directory than$ROOT/lib, seesystools:make_script/1,2.

-code_path_cache:
Enables the code path cache of the code server, seecode(3erl).

Ericsson AB erts 5.8.5 2

erl(1) User Commands erl(1)

-compile Mod1 Mod2 ...:
Compiles the specified modules and then terminates (with non-zero exit code if the compilation of
some file did not succeed). Implies-noinput. Not recommended - useerlc instead.

-config Config:
Specifies the name of a configuration file,Config.config, which is used to configure applications. See
app(5)andapplication(3erl).

-connect_all false:
If this flag is present,global will not maintain a fully connected network of distributed Erlang nodes,
and then global name registration cannot be used. Seeglobal(3erl).

-cookie Cookie:
Obsolete flag without any effect and common misspelling for-setcookie. Use-setcookieinstead.

-detached:
Starts the Erlang runtime system detached from the system console. Useful for running daemons and
backgrounds processes. Implies-noinput.

-emu_args:
Useful for debugging. Prints out the actual arguments sent to the emulator.

-env Variable Value:
Sets the host OS environment variableVariable to the value Value for the Erlang runtime system.
Example:

% erl -env DISPLAY gin:0

In this example, an Erlang runtime system is started with theDISPLAYenvironment variable set to
gin:0.

-eval Expr(init flag):
Makesinit evaluate the expressionExpr, seeinit(3erl) .

-extra(init flag):
Everything following -extra is considered plain arguments and can be retrieved using
init:get_plain_arguments/0.

-heart:
Starts heart beat monitoring of the Erlang runtime system. Seeheart(3erl).

-hidden:
Starts the Erlang runtime system as a hidden node, if it is run as a distributed node. Hidden nodes
always establish hidden connections to all other nodes except for nodes in the same global group. Hid-
den connections are not published on either of the connected nodes, i.e. neither of the connected nodes
are part of the result fromnodes/0 on the other node. See also hidden global groups,
global_group(3erl).

-hosts Hosts:
Specifies the IP addresses for the hosts on which Erlang boot servers are running, see
erl_boot_server(3erl) . This flag is mandatory if the-loader inetflag is present.

The IP addresses must be given in the standard form (four decimal numbers separated by periods, for
example"150.236.20.74". Hosts names are not acceptable, but a broadcast address (preferably limited
to the local network) is.

-id Id:
Specifies the identity of the Erlang runtime system. If it is run as a distributed node,Id must be identi-
cal to the name supplied together with the-snameor -nameflag.

Ericsson AB erts 5.8.5 3

erl(1) User Commands erl(1)

-init_debug:
Makesinit write some debug information while interpreting the boot script.

-instr(emulator flag):
Selects an instrumented Erlang runtime system (virtual machine) to run, instead of the ordinary one.
When running an instrumented runtime system, some resource usage data can be obtained and ana-
lysed using the moduleinstrument. Functionally, it behaves exactly like an ordinary Erlang runtime
system.

-loader Loader:
Specifies the method used byerl_prim_loader to load Erlang modules into the system. See
erl_prim_loader(3erl). Two Loadermethods are supported,efile and inet. efile means use the local
file system, this is the default. inet means use a boot server on another machine, and the-id, -hostsand
-setcookieflags must be specified as well. IfLoader is something else, the user suppliedLoaderport
program is started.

-make:
Makes the Erlang runtime system invoke make:all() in the current working directory and then termi-
nate. Seemake(3erl). Implies-noinput.

-man Module:
Displays the manual page for the Erlang moduleModule. Only supported on Unix.

-mode interactive | embedded:
Indicates if the system should load code dynamically (interactive), or if all code should be loaded dur-
ing system initialization (embedded), seecode(3erl). Defaults tointeractive.

-name Name:
Makes the Erlang runtime system into a distributed node. This flag invokes all network servers neces-
sary for a node to become distributed. Seenet_kernel(3erl). It is also ensured thatepmdruns on the
current host before Erlang is started. Seeepmd(1).

The name of the node will beName@Host, whereHost is the fully qualified host name of the current
host. For short names, use the-snameflag instead.

-noinput:
Ensures that the Erlang runtime system never tries to read any input. Implies-noshell.

-noshell:
Starts an Erlang runtime system with no shell. This flag makes it possible to have the Erlang runtime
system as a component in a series of UNIX pipes.

-nostick:
Disables the sticky directory facility of the Erlang code server, seecode(3erl).

-oldshell:
Invokes the old Erlang shell from Erlang 3.3. The old shell can still be used.

-pa Dir1 Dir2 ...:
Adds the specified directories to the beginning of the code path, similar tocode:add_pathsa/1. See
code(3erl). As an alternative to -pa, if sev eral directories are to be prepended to the code and the
directories have a common parent directory, that parent directory could be specified in theERL_LIBS
environment variable. Seecode(3erl).

-pz Dir1 Dir2 ...:
Adds the specified directories to the end of the code path, similar tocode:add_pathsz/1. See
code(3erl).

-remsh Node:
Starts Erlang with a remote shell connected toNode.

Ericsson AB erts 5.8.5 4

erl(1) User Commands erl(1)

-rsh Program:
Specifies an alternative to rsh for starting a slave node on a remote host. Seeslave(3erl).

-run Mod [Func [Arg1, Arg2, ...]](init flag):
Makesinit call the specified function.Func defaults tostart. If no arguments are provided, the func-
tion is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list[Arg1,Arg2,...]
as argument. All arguments are passed as strings. Seeinit(3erl) .

-s Mod [Func [Arg1, Arg2, ...]](init flag):
Makesinit call the specified function.Func defaults tostart. If no arguments are provided, the func-
tion is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list[Arg1,Arg2,...]
as argument. All arguments are passed as atoms. Seeinit(3erl) .

-setcookie Cookie:
Sets the magic cookie of the node toCookie, seeerlang:set_cookie/2.

-shutdown_time Time:
Specifies how long time (in milliseconds) theinit process is allowed to spend shutting down the sys-
tem. IfTimems have elapsed, all processes still existing are killed. Defaults toinfinity.

-sname Name:
Makes the Erlang runtime system into a distributed node, similar to-name, but the host name portion
of the node nameName@Hostwill be the short name, not fully qualified.

This is sometimes the only way to run distributed Erlang if the DNS (Domain Name System) is not
running. There can be no communication between nodes running with the-snameflag and those run-
ning with the-nameflag, as node names must be unique in distributed Erlang systems.

-smp [enable|auto|disable]:
-smp enableand-smpstarts the Erlang runtime system with SMP support enabled. This may fail if no
runtime system with SMP support is available. -smp autostarts the Erlang runtime system with SMP
support enabled if it is available and more than one logical processor are detected.-smp disablestarts a
runtime system without SMP support. By default -smp autowill be used unless a conflicting parameter
has been passed, then-smp disablewill be used. Currently only the-hybrid parameter conflicts with
-smp auto.

NOTE: The runtime system with SMP support will not be available on all supported platforms. See
also the+Sflag.

-version(emulator flag):
Makes the emulator print out its version number. The same aserl +V.

EMULA TOR FLAGS
erl invokes the code for the Erlang emulator (virtual machine), which supports the following flags:

+a size:
Suggested stack size, in kilowords, for threads in the async-thread pool. Valid range is 16-8192 kilo-
words. The default suggested stack size is 16 kilowords, i.e, 64 kilobyte on 32-bit architectures. This
small default size has been chosen since the amount of async-threads might be quite large. The default
size is enough for drivers delivered with Erlang/OTP, but might not be sufficiently large for other
dynamically linked in drivers that use thedri ver_async() functionality. Note that the value passed is
only a suggestion, and it might even be ignored on some platforms.

+A size:
Sets the number of threads in async thread pool, valid range is 0-1024. Default is 0.

+B [c | d | i] :
The c option makesCtrl-C interrupt the current shell instead of invoking the emulator break handler.
Thed option (same as specifying+B without an extra option) disables the break handler. Thei option
makes the emulator ignore any break signal.

Ericsson AB erts 5.8.5 5

erl(1) User Commands erl(1)

If the c option is used witholdshellon Unix,Ctrl-C will restart the shell process rather than interrupt
it.

Note that on Windows, this flag is only applicable forwerl, not erl (oldshell). Note also thatCtrl-
Breakis used instead ofCtrl-C on Windows.

+c:
Disable compensation for sudden changes of system time.

Normally, erlang:now/0will not immediately reflect sudden changes in the system time, in order to
keep timers (includingreceive-after) working. Instead, the time maintained byerlang:now/0is slowly
adjusted towards the new system time. (Slowly means in one percent adjustments; if the time is off by
one minute, the time will be adjusted in 100 minutes.)

When the+c option is given, this slow adjustment will not take place. Insteaderlang:now/0will
always reflect the current system time. Note that timers are based onerlang:now/0. If the system time
jumps, timers then time out at the wrong time.

+d:
If the emulator detects an internal error (or runs out of memory), it will by default generate both a
crash dump and a core dump. The core dump will, however, not be very useful since the content of
process heaps is destroyed by the crash dump generation.

The +d option instructs the emulator to only produce a core dump and no crash dump if an internal
error is detected.

Callingerlang:halt/1with a string argument will still produce a crash dump.

+e Number:
Set max number of ETS tables.

+ec:
Force thecompressedoption on all ETS tables. Only intended for test and evaluation.

+fnl :
The VM works with file names as if they are encoded using the ISO-latin-1 encoding, disallowing
Unicode characters with codepoints beyond 255. This is default on operating systems that have trans-
parent file naming, i.e. all Unixes except MacOSX.

+fnu:
The VM works with file names as if they are encoded using UTF-8 (or some other system specific
Unicode encoding). This is the default on operating systems that enforce Unicode encoding, i.e. Win-
dows and MacOSX.

By enabling Unicode file name translation on systems where this is not default, you open up to the
possibility that some file names can not be interpreted by the VM and therefore will be returned to the
program as raw binaries. The option is therefore considered experimental.

+fna:
Selection between+fnl and+fnu is done based on the current locale settings in the OS, meaning that if
you have set your terminal for UTF-8 encoding, the filesystem is expected to use the same encoding
for filenames (use with care).

+hms Size:
Sets the default heap size of processes to the sizeSize.

Ericsson AB erts 5.8.5 6

erl(1) User Commands erl(1)

+hmbs Size:
Sets the default binary virtual heap size of processes to the sizeSize.

+K true | false:
Enables or disables the kernel poll functionality if the emulator supports it. Default isfalse(disabled).
If the emulator does not support kernel poll, and the+K flag is passed to the emulator, a warning is
issued at startup.

+l :
Enables auto load tracing, displaying info while loading code.

+MFlag Value:
Memory allocator specific flags, seeerts_alloc(3erl)for further information.

+P Number:
Sets the maximum number of concurrent processes for this system.Numbermust be in the range
16..134217727. Default is 32768.

+R ReleaseNumber:
Sets the compatibility mode.

The distribution mechanism is not backwards compatible by default. This flags sets the emulator in
compatibility mode with an earlier Erlang/OTP releaseReleaseNumber. The release number must be
in the range7..<current release>. This limits the emulator, making it possible for it to communicate
with Erlang nodes (as well as C- and Java nodes) running that earlier release.

For example, an R10 node is not automatically compatible with an R9 node, but R10 nodes started
with the+R 9 flag can co-exist with R9 nodes in the same distributed Erlang system, they are R9-com-
patible.

Note: Make sure all nodes (Erlang-, C-, and Java nodes) of a distributed Erlang system is of the same
Erlang/OTP release, or from two different Erlang/OTP releases X and Y, whereall Y nodes have com-
patibility mode X.

For example: A distributed Erlang system can consist of R10 nodes, or of R9 nodes and R9-compati-
ble R10 nodes, but not of R9 nodes, R9-compatible R10 nodes and "regular" R10 nodes, as R9 and
"regular" R10 nodes are not compatible.

+r :
Force ets memory block to be moved on realloc.

+rg ReaderGroupsLimit:
Limits the amount of reader groups used by read/write locks optimized for read operations in the
Erlang runtime system. By default the reader groups limit equals 8.

When the amount of schedulers is less than or equal to the reader groups limit, each scheduler has its
own reader group. When the amount of schedulers is larger than the reader groups limit, schedulers
share reader groups. Shared reader groups degrades read lock and read unlock performance while a
large amount of reader groups degrades write lock performance, so the limit is a tradeoff between per-
formance for read operations and performance for write operations. Each reader group currently con-
sumes 64 byte in each read/write lock. Also note that a runtime system using shared reader groups
benefits frombinding schedulers to logical processors, since the reader groups are distributed better
between schedulers.

+S Schedulers:SchedulerOnline:
Sets the amount of scheduler threads to create and scheduler threads to set online when SMP support
has been enabled. Valid range for both values are 1-1024. If the Erlang runtime system is able to

Ericsson AB erts 5.8.5 7

erl(1) User Commands erl(1)

determine the amount of logical processors configured and logical processors available, Schedulers
will default to logical processors configured, andSchedulersOnlinewill default to logical processors
available; otherwise, the default values will be 1.Schedulersmay be omitted if:SchedulerOnlineis not
and vice versa. The amount of schedulers online can be changed at run time viaerlang:sys-
tem_flag(schedulers_online, SchedulersOnline).

This flag will be ignored if the emulator doesn’t hav eSMP support enabled (see the-smpflag).

+sFlag Value:
Scheduling specific flags.

+sbt BindType:
Set scheduler bind type. Currently validBindTypes:

u:
Same aserlang:system_flag(scheduler_bind_type, unbound).

ns:
Same aserlang:system_flag(scheduler_bind_type, no_spread).

ts:
Same aserlang:system_flag(scheduler_bind_type, thread_spread).

ps:
Same aserlang:system_flag(scheduler_bind_type, processor_spread).

s:
Same aserlang:system_flag(scheduler_bind_type, spread).

nnts:
Same aserlang:system_flag(scheduler_bind_type, no_node_thread_spread).

nnps:
Same aserlang:system_flag(scheduler_bind_type, no_node_processor_spread).

tnnps:
Same aserlang:system_flag(scheduler_bind_type, thread_no_node_processor_spread).

db:
Same aserlang:system_flag(scheduler_bind_type, default_bind).

Binding of schedulers is currently only supported on newer Linux, Solaris, FreeBSD, and Windows
systems.

If no CPU topology is available when the+sbt flag is processed andBindTypeis any other type than
u, the runtime system will fail to start. CPU topology can be defined using the+sct flag. Note that
the +sct flag may have to be passed before the+sbt flag on the command line (in case no CPU
topology has been automatically detected).

The runtime system will by default bind schedulers to logical processors using thedefault_bind
bind type if the amount of schedulers are at least equal to the amount of logical processors config-
ured, binding of schedulers is supported, and a CPU topology is available at startup.

NOTE: If the Erlang runtime system is the only operating system process that binds threads to logi-
cal processors, this improves the performance of the runtime system. However, if other operating
system processes (as for example another Erlang runtime system) also bind threads to logical pro-
cessors, there might be a performance penalty instead. If this is the case you, are advised to unbind
the schedulers using the+sbtu command line argument, or by invoking erlang:system_flag(sched-
uler_bind_type, unbound).

Ericsson AB erts 5.8.5 8

erl(1) User Commands erl(1)

For more information, seeerlang:system_flag(scheduler_bind_type, SchedulerBindType).

+sct CpuTopology:

* <Id> = integer(); when 0 =< <Id> =< 65535

* <IdRange> = <Id>-<Id>

* <IdOrIdRange> = <Id> | <IdRange>

* <IdList> = <IdOrIdRange>,<IdOrIdRange> | <IdOrIdRange>

* <LogicalIds> = L<IdList>

* <ThreadIds> = T<IdList> | t<IdList>

* <CoreIds> = C<IdList> | c<IdList>

* <ProcessorIds> = P<IdList> | p<IdList>

* <NodeIds> = N<IdList> | n<IdList>

* <IdDefs> = <LogicalIds><ThreadIds><CoreIds><ProcessorIds><NodeIds> | <Logi-
calIds><ThreadIds><CoreIds><NodeIds><ProcessorIds>

* CpuTopology = <IdDefs>:<IdDefs> | <IdDefs>

Upper-case letters signify real identifiers and lower-case letters signify fake identifiers only used for
description of the topology. Identifiers passed as real identifiers may be used by the runtime system
when trying to access specific hardware and if they are not correct the behavior is undefined. Faked
logical CPU identifiers are not accepted since there is no point in defining the CPU topology with-
out real logical CPU identifiers. Thread, core, processor, and node identifiers may be left out. If left
out, thread id defaults tot0, core id defaults toc0, processor id defaults top0, and node id will be
left undefined. Either each logical processor must belong to one and only one NUMA node, or no
logical processors must belong to any NUMA nodes.

Both increasing and decreasing<IdRange>s are allowed.

NUMA node identifiers are system wide. That is, each NUMA node on the system have to hav ea
unique identifier. Processor identifiers are also system wide. Core identifiers are processor wide.
Thread identifiers are core wide.

The order of the identifier types imply the hierarchy of the CPU topology. Valid orders are either
<LogicalIds><ThreadIds><CoreIds><ProcessorIds><NodeIds>, or <LogicalIds><Threa-
dIds><CoreIds><NodeIds><ProcessorIds>. That is, thread is part of a core which is part of a pro-
cessor which is part of a NUMA node, or thread is part of a core which is part of a NUMA node
which is part of a processor. A cpu topology can consist of both processor external, and processor
internal NUMA nodes as long as each logical processor belongs to one and only one NUMA node.
If <ProcessorIds>is left out, its default position will be before<NodeIds>. That is, the default is
processor external NUMA nodes.

If a list of identifiers is used in an<IdDefs>:

* <LogicalIds> have to be a list of identifiers.

* At least one other identifier type apart from<LogicalIds> also have to hav ea list of identifiers.

* All lists of identifiers have to produce the same amount of identifiers.

A simple example. A single quad core processor may be described this way:

Ericsson AB erts 5.8.5 9

erl(1) User Commands erl(1)

% erl +sct L0-3c0-3
1> erlang:system_info(cpu_topology).
[{processor,[{core,{logical,0}},

{core,{logical,1}},
{core,{logical,2}},
{core,{logical,3}}]}]

A l ittle more complicated example. Two quad core processors. Each processor in its own NUMA
node. The ordering of logical processors is a little weird. This in order to give a better example of
identifier lists:

% erl +sct L0-1,3-2c0-3p0N0:L7,4,6-5c0-3p1N1
1> erlang:system_info(cpu_topology).
[{node,[{processor,[{core,{logical,0}},

{core,{logical,1}},
{core,{logical,3}},
{core,{logical,2}}]}]},

{node,[{processor,[{core,{logical,7}},
{core,{logical,4}},
{core,{logical,6}},
{core,{logical,5}}]}]}]

As long as real identifiers are correct it is okay to pass a CPU topology that is not a correct descrip-
tion of the CPU topology. When used with care this can actually be very useful. This in order to
trick the emulator to bind its schedulers as you want. For example, if you want to run multiple
Erlang runtime systems on the same machine, you want to reduce the amount of schedulers used
and manipulate the CPU topology so that they bind to different logical CPUs. An example, with two
Erlang runtime systems on a quad core machine:

% erl +sct L0-3c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname one
% erl +sct L3-0c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname two

In this example each runtime system have two schedulers each online, and all schedulers online will
run on different cores. If we change to one scheduler online on one runtime system, and three
schedulers online on the other, all schedulers online will still run on different cores.

Note that a faked CPU topology that does not reflect how the real CPU topology looks like is likely
to decrease the performance of the runtime system.

For more information, seeerlang:system_flag(cpu_topology, CpuTopology).

+swt very_low|low|medium|high|very_high:
Set scheduler wakeup threshold. Default ismedium. The threshold determines when to wake up
sleeping schedulers when more work than can be handled by currently awake schedulers exist. A
low threshold will cause earlier wakeups, and a high threshold will cause later wakeups. Early
wakeups will distribute work over multiple schedulers faster, but work will more easily bounce
between schedulers.

NOTE:This flag may be removed or changed at any time without prior notice.

Ericsson AB erts 5.8.5 10

erl(1) User Commands erl(1)

+sss size:
Suggested stack size, in kilowords, for scheduler threads. Valid range is 4-8192 kilowords. The
default stack size is OS dependent.

+t size:
Set the maximum number of atoms the VM can handle. Default is 1048576.

+T Level:
Enables modified timing and sets the modified timing level. Currently valid range is 0-9. The timing of
the runtime system will change. A high level usually means a greater change than a low lev el. Chang-
ing the timing can be very useful for finding timing related bugs.

Currently, modified timing affects the following:

Process spawning:
A process callingspawn, spawn_link, spawn_monitor, or spawn_optwill be scheduled out immedi-
ately after completing the call. When higher modified timing levels are used, the caller will also
sleep for a while after being scheduled out.

Context reductions:
The amount of reductions a process is a allowed to use before being scheduled out is increased or
reduced.

Input reductions:
The amount of reductions performed before checking I/O is increased or reduced.

NOTE:Performance will suffer when modified timing is enabled. This flag isonly intended for testing
and debugging. Also note thatreturn_toandreturn_fromtrace messages will be lost when tracing on
the spawn BIFs. This flag may be removed or changed at any time without prior notice.

+V:
Makes the emulator print out its version number.

+v:
Verbose.

+W w | i:
Sets the mapping of warning messages forerror_logger. Messages sent to the error logger using one
of the warning routines can be mapped either to errors (default), warnings (+W w), or info reports (+W
i). The current mapping can be retrieved using error_logger:warning_map/0. Seeerror_logger(3erl)
for further information.

+zFlag Value:
Miscellaneous flags.

+zdbbl size:
Set the distribution buffer busy limit (dist_buf_busy_limit) in kilobytes. Valid range is 1-2097151.
Default is 1024.

A larger buffer limit will allow processes to buffer more outgoing messages over the distribution.
When the buffer limit has been reached, sending processes will be suspended until the buffer size
has shrunk. The buffer limit is per distribution channel. A higher limit will give lower latency and
higher throughput at the expense of higher memory usage.

ENVIRONMENT VARIABLES
ERL_CRASH_DUMP:

If the emulator needs to write a crash dump, the value of this variable will be the file name of the crash
dump file. If the variable is not set, the name of the crash dump file will beerl_crash.dumpin the cur-
rent directory.

Ericsson AB erts 5.8.5 11

erl(1) User Commands erl(1)

ERL_CRASH_DUMP_NICE:
Unix systems: If the emulator needs to write a crash dump, it will use the value of this variable to set
the nice value for the process, thus lowering its priority. The allowable range is 1 through 39 (higher
values will be replaced with 39). The highest value, 39, will give the process the lowest priority.

ERL_CRASH_DUMP_SECONDS:
Unix systems: This variable gives the number of seconds that the emulator will be allowed to spend
writing a crash dump. When the given number of seconds have elapsed, the emulator will be termi-
nated by a SIGALRM signal.

ERL_AFLAGS:
The content of this environment variable will be added to the beginning of the command line forerl.

The-extraflag is treated specially. Its scope ends at the end of the environment variable content. Argu-
ments following an-extra flag are moved on the command line into the-extra section, i.e. the end of
the command line following after an-extraflag.

ERL_ZFLAGSandERL_FLAGS:
The content of these environment variables will be added to the end of the command line forerl.

The-extraflag is treated specially. Its scope ends at the end of the environment variable content. Argu-
ments following an-extra flag are moved on the command line into the-extra section, i.e. the end of
the command line following after an-extraflag.

ERL_LIBS:
This environment variable contains a list of additional library directories that the code server will
search for applications and add to the code path. Seecode(3erl).

ERL_EPMD_ADDRESS:
This environment variable may be set to a comma-separated list of IP addresses, in which case the
epmd daemon will listen only on the specified address(es) and on the loopback address (which is
implicitly added to the list if it has not been specified).

ERL_EPMD_PORT:
This environment variable can contain the port number to use when communicating withepmd. The
default port will work fine in most cases. A different port can be specified to allow nodes of indepen-
dent clusters to co-exist on the same host. All nodes in a cluster must use the same epmd port number.

CONFIGURATION
The standard Erlang/OTP system can be re-configured to change the default behavior on start-up.

The .erlang Start-up File:
When Erlang/OTP is started, the system searches for a file named .erlang in the directory where
Erlang/OTP is started. If not found, the user’s home directory is searched for an .erlang file.

If an .erlang file is found, it is assumed to contain valid Erlang expressions. These expressions are
evaluated as if they were input to the shell.

A typical .erlang file contains a set of search paths, for example:

io:format("executing user profile in HOME/.erlang\n",[]).
code:add_path("/home/calvin/test/ebin").
code:add_path("/home/hobbes/bigappl-1.2/ebin").
io:format(".erlang rc finished\n",[]).

user_default and shell_default:
Functions in the shell which are not prefixed by a module name are assumed to be functional objects
(Funs), built-in functions (BIFs), or belong to the module user_default or shell_default.

Ericsson AB erts 5.8.5 12

erl(1) User Commands erl(1)

To include private shell commands, define them in a module user_default and add the following argu-
ment as the first line in the .erlang file.

code:load_abs("..../user_default").

erl:
If the contents of .erlang are changed and a private version of user_default is defined, it is possible to
customize the Erlang/OTP environment. More powerful changes can be made by supplying command
line arguments in the start-up script erl. Refer to erl(1) andinit(3erl) for further information.

SEE ALSO
init(3erl) , erl_prim_loader(3erl), erl_boot_server(3erl) , code(3erl), application(3erl), heart(3erl),
net_kernel(3erl), auth(3erl), make(3erl), epmd(1), erts_alloc(3erl)

Ericsson AB erts 5.8.5 13

erl_call(1) User Commands erl_call(1)

NAME
erl_call − Call/Start a Distributed Erlang Node

DESCRIPTION
erl_call makes it possible to start and/or communicate with a distributed Erlang node. It is built upon the
erl_interfacelibrary as an example application. Its purpose is to use an Unix shell script to interact with a
distributed Erlang node. It performs all communication with the Erlangre x server, using the standard
Erlang RPC facility. It does not require any special software to be run at the Erlang target node.

The main use is to either start a distributed Erlang node or to make an ordinary function call. However, it is
also possible to pipe an Erlang module toerl_call and have it compiled, or to pipe a sequence of Erlang
expressions to be evaluated (similar to the Erlang shell).

Options, which causestdin to be read, can be used with advantage as scripts from within (Unix) shell
scripts. Another nice use oferl_call could be from (http) CGI-bin scripts.

EXPORTS
erl_call <options>

Each option flag is described below with its name, type and meaning.

-a [Mod [Fun [Args]]]]:
(optional): Applies the specified function and returns the result.Mod must be specified, how-
ev er start and [] are assumed for unspecifiedFun andArgs, respectively. Args should be in
the same format as forerlang:apply/3. Note that this flag takes exactly one argument, so
quoting may be necessary in order to groupMod, Fun andArgs, in a manner dependent on
the behavior of your command shell.

-c Cookie:
(optional): Use this option to specify a certain cookie. If no cookie is specified, the
˜/.erlang.cookiefile is read and its content are used as cookie. The Erlang node we want to
communicate with must have the same cookie.

-d:
(optional): Debug mode. This causes all IO to be output to the file˜/.erl_call.out.Nodename,
whereNodenameis the node name of the Erlang node in question.

-e:
(optional): Reads a sequence of Erlang expressions, separated by ’,’ and ended with a ’.’,
from stdin until EOF (Control-D). Evaluates the expressions and returns the result from the
last expression. Returns{ok,Result}if successful.

-h HiddenName:
(optional): Specifies the name of the hidden node thaterl_call represents.

-m:
(optional): Reads an Erlang module fromstdinand compiles it.

-n Node:
(one of-n, -name, -snameis required): Has the same meaning as-nameand can still be used
for backwards compatibility reasons.

-name Node:
(one of-n, -name, -snameis required):Nodeis the name of the node to be started or commu-
nicated with. It is assumed thatNodeis started witherl -name, which means that fully quali-
fied long node names are used. If the-s option is given, an Erlang node will (if necessary) be
started witherl -name.

-q:
(optional): Halts the Erlang node specified with the -n switch. This switch overrides the -s
switch.

Ericsson AB erl_interface 3.7.5 1

erl_call(1) User Commands erl_call(1)

-r:
(optional): Generates a random name of the hidden node thaterl_call represents.

-s:
(optional): Starts a distributed Erlang node if necessary. This means that in a sequence of
calls, where the ’-s’ and ’-n Node’ are constant, only the first call will start the Erlang node.
This makes the rest of the communication very fast. This flag is currently only available on
the Unix platform.

-sname Node:
(one of-n, -name, -snameis required):Nodeis the name of the node to be started or commu-
nicated with. It is assumed thatNodeis started witherl -snamewhich means that short node
names are used. If-s option is given, an Erlang node will be started (if necessary) witherl
-sname.

-v:
(optional): Prints a lot ofverboseinformation. This is only useful for the developer and main-
tainer oferl_call.

-x ErlScript:
(optional): Specifies another name of the Erlang start-up script to be used. If not specified, the
standarderl start-up script is used.

EXAMPLES
Starts an Erlang node and callserlang:time/0.

erl_call -s -a ’erlang time’ -n madonna
{18,27,34}

Terminates an Erlang node by callingerlang:halt/0.

erl_call -s -a ’erlang halt’ -n madonna

An apply with several arguments.

erl_call -s -a ’lists map [{math,sqrt},[1,4,9,16,25]]’ -n madonna

Evaluates a couple of expressions.The input ends with EOF (Control-D) .

erl_call -s -e -n madonna
statistics(runtime),
X=1,
Y=2,
{_,T}=statistics(runtime),
{X+Y,T}.
ˆD
{ok,{3,0}}

Compiles a module and runs it.Again, the input ends with EOF (Control-D) . (In the example shown, the
output has been formatted afterwards).

erl_call -s -m -a lolita -n madonna
-module(lolita).
-compile(export_all).
start() ->

P = processes(),
F = fun(X) -> {X,process_info(X,registered_name)} end,
lists:map(F,[],P).

Ericsson AB erl_interface 3.7.5 2

erl_call(1) User Commands erl_call(1)

ˆD
[{<madonna@chivas.du.etx.ericsson.se,0,0>,

{registered_name,init}},
{<madonna@chivas.du.etx.ericsson.se,2,0>,

{registered_name,erl_prim_loader}},
{<madonna@chivas.du.etx.ericsson.se,4,0>,

{registered_name,error_logger}},
{<madonna@chivas.du.etx.ericsson.se,5,0>,

{registered_name,application_controller}},
{<madonna@chivas.du.etx.ericsson.se,6,0>,

{registered_name,kernel}},
{<madonna@chivas.du.etx.ericsson.se,7,0>,

[]},
{<madonna@chivas.du.etx.ericsson.se,8,0>,

{registered_name,kernel_sup}},
{<madonna@chivas.du.etx.ericsson.se,9,0>,

{registered_name,net_sup}},
{<madonna@chivas.du.etx.ericsson.se,10,0>,

{registered_name,net_kernel}},
{<madonna@chivas.du.etx.ericsson.se,11,0>,

[]},
{<madonna@chivas.du.etx.ericsson.se,12,0>,

{registered_name,global_name_server}},
{<madonna@chivas.du.etx.ericsson.se,13,0>,

{registered_name,auth}},
{<madonna@chivas.du.etx.ericsson.se,14,0>,

{registered_name,rex}},
{<madonna@chivas.du.etx.ericsson.se,15,0>,

[]},
{<madonna@chivas.du.etx.ericsson.se,16,0>,

{registered_name,file_server}},
{<madonna@chivas.du.etx.ericsson.se,17,0>,

{registered_name,code_server}},
{<madonna@chivas.du.etx.ericsson.se,20,0>,

{registered_name,user}},
{<madonna@chivas.du.etx.ericsson.se,38,0>,

[]}]

Ericsson AB erl_interface 3.7.5 3

